
 International Journal of Advanced and Applied Sciences, 4(10) 2017, Pages: 144-149

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

144

Genetic optimized software component reuse model for reducing
development and maintenance efforts

Amit Verma *, Gurpreet Singh Kamboj, Iqbaldeep Kaur

Department of Computer Science and Engineering, CGC Landran, Mohali-140307, Punjab, India

A R T I C L E I N F O A B S T R A C T

Article history:
Received 9 June 2017
Received in revised form
23 August 2017
Accepted 1 September 2017

The proposed algorithm is a hybrid approach to find a software component.
The hybrid approach is a combination of various modules called data
extraction, Fact and rules, Optimization with genetic algorithm, etc. all these
modules process raw data and provide the output as a component for reuse
on the basis of various priorities matrixes. Proposed approach uses priority
vector for the processing of all entries and define priorities on the basis of
availability of various data factors along with issues in the software
component. The entire component derived through the raking process with
the help of genetic algorithm for the final output. Proposed approach
provides average accuracy 99% for detection of software components.
Various other parameters are also compared with the existing developed
algorithms which provide comparative study and enhancement of the
proposed method.

Keywords:
Software engineering
Component based Image retrieval
Genetic algorithm and reusability

© 2017 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

* Development of software systems are not only a
structure of codes. It is used to fulfill the
requirements of users with some calculation
methods. These software systems are designed and
implemented to humans to perform some specific
task. Lots of modules are integrated with the
software system which is used to check the
performance and help in development like libraries,
external executable code (Grundy, 1999). The fast
development in this field is used software
reusability. It is a powerful technique to design and
develop software components and make them
independent. Lots of designed products are stored in
the repositories. They are designed for reuse in
future deployments. Reusable component is cloned
from the existing libraries and developed with some
other component to form a new service or software
system to their users (Mili et al., 1997).

The components required to be reusable which
means that it can instantiate them in any context,
and they can control as expected. They should
integrally be multi-tenant, which means they don't
have data that is global and varying except if it
relates to all uses. They should not have much

* Corresponding Author.
Email Address: dramitverma.cu@gmail.com (A. Verma)
https://doi.org/10.21833/ijaas.2017.010.020
2313-626X/© 2017 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

dependence and drag in too many other
components. Using the component should not mark
remaining software stack, which means they need to
run or be able to run in an OSGi or OSGi like vessel
and not have naming conflicts with other
components (Inoue et al., 2005).

Software component reuse is a significant
concept in software development, as it optimizes
software development efforts, cost, time and
increase flexibility and reliability. Software CBSE
defines the reuse of software-components, which
could be retrievable and assembled into requests of
specific domains.

In existing software-component repositories only
retrieve a limited set of software-components and
some don’t efficient user queries. In-related
software-components might exist defined too
smaller. The method of the repository itself (Cai et
al., 2000) often doesn’t reflect semantic relationships
among software-components and thus ignores
significant component retrieval and regeneration of
semantic interrelated software-components.

In this research paper describes the ontology and
faced identification based Meta data repository and
repository component for retrieval and software
components as shown in Fig. 1.

In this research work, the work is on genetic
algorithm to optimize the component retrieval data
based on fit value. The genetic optimization
approach is designed to solve the difficult problems
(Complexity, cost, energy and Time consumptions).

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dramitverma.cu@gmail.com
https://doi.org/10.21833/ijaas.2017.010.020
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2017.010.020&domain=pdf&

Verma et al/International Journal of Advanced and Applied Sciences, 4(10) 2017, Pages: 144-149

145

Fig. 1: Component based system

2. Literature review

Dutta and Sengupta (2015) focused on the
development of software systems based on
component reuse and their storage structures. The
author presents the approach for detecting
components based on various parameters and
provide a method that how to choose components
which fulfill the requirements of future
developments. Gupta and Kumar (2013) presented a
software component reuse model based on a
classification technique which helps developers
manage the software components in terms of
storage, detection of components on semantic
domain and taxonomies. The repository system that
used in the existing system is not able to provide the
information for all the components. It’s limited to a
set of components. But in the proposed system in
this research, analyses the overall input and
classified the component based on various
parameters and provide efficient output for software
component reuse. Basha and Moiz (2012) the author
in this research define the difference between the
component and domain engineering. The author
present change in domain engineering of the
technology based on component technologies.
Shirali-Shahreza and Shirali-Shahreza (2010)
provided the research method in the field of
software component which helps developers to use

components based on reviewed and surveyed
manners. It helps to reuse the components from
existing repositories and make the development
speed faster and reliable for future developments.
Crnkovic et al. (2002) described that the main
motive of this conference is aware about the
software component reuse techniques and their uses
in this domain. The component reuse process
provides less time consuming for large scale
software development. This domain can save
maximum time and cost with much reliability of
development of software engineering. Jia and Gu
(2002) discussed about the software reuse in a
workshop on software engineering. The main
concept of this paper is to provide knowledge about
software component reuse to the researcher and
their benefits for future development that how to
store the component, component independence,
reusability and their effects on development. It’s a
powerful concept in software development which
provide a higher rate of cost and time saving with
reliable development. Wang et al. (2000) presented
software management approach for low cost reuse.
The development of software systems is more time
taking process in this field which can be more costly.
But in this research some back-end processing
approaches are used to minimize the cost of
software reuse. The processed using component
reuse in back ends processing which minimize the
development cost for the design and development of
software systems. Penix et al. (1995) proposed a
method which is used to classify software
components based on stages. The other parameter
which used to classify the software component is
their semantic feature which helps to check the
working capability and their performance so that it
can provide more reliable performance when reuse
(Table 1).

Table 1: Comparative analysis techniques for component reuse
Methodology Author Purpose/issue

SBA for R of RBC (Fanchao et al., 2006) Study the M of BCR
SBRM of RSC (Al Saiyd et al., 2010) Define the MP that is related to CBD

SBR of SC through FI (Şora and Todinca, 2006) Define the Principles Used in the SoC
ACR and R and A using FS (Penix, 1998) IandR of C pertinent to a problem

UGA to IIRS (Radwan et al., 2008) Define FF for app(IR)

3. Simulation model

Software component reusability reduces time
consumption, efforts, and cost of software
development process. Here in this research the
proposed approach process component's data to find
the software component for reuse. There are various
steps followed by the system to find the software
components. In this process, the first step is to load
raw data from the dataset into a software reuse
system and process that data to arrange sub-entries.
After processing of all the entries, the system asks
the user to enter the component for searching from
repository's detail. The entire component processed
from fact and rule programming to refine the dataset
and eliminate other unwanted entries.

Fact and rule processing used to arrange data in
the right manners as the data loaded from the
dataset in the form of raw material (Fig. 2).

The processed data pass to the next step and
Genetic algorithm process entries on the basis of
various sub-properties. The genetic algorithm
process and define the priorities and ranking of the
component and used to generate optimal output for
user search. The software components are
retrieved from the dataset and shown according to
the quality and data available along with the issues
of the software component. After processing the
component the proposed approach evaluates result
parameters and stops all the objects in memory for
another process.

In this methodological focus on genetic algorithm,
this algorithm is an initialize the set of size, i.e.,

Verma et al/International Journal of Advanced and Applied Sciences, 4(10) 2017, Pages: 144-149

146

called a population. Problem Solutions from
individual population are used and reserved to new
population. This is hope, that the novel population
would be better than previous one. Results which
are particular to form novel solution, i.e. data stream
bits are selected with the help of a fitness function,
the suitable phases they have to regenerate.

Fig. 2: Proposed flow chart

GO techniques, to solve an optimization issue by

repetition the following three operators:

 Selection
 Crossover
 Mutation

4. Simulation results and discussions

In this section, results have been discussed with
main form which is used to link all the modules in
the software reuse system. The first task in this is to

load all the data entries in the memory.The .NET is
the technology from Microsoft, on which all other
Microsoft technologies will be depending on in the
future. It is a major technology change, introduced
by Microsoft, to latch the market from the SUN's
Java.

System use matrix based approach to manage all
the entries on server side (Fig. 3). Once all the
entries uploaded to the server for processing it
forward the control to the next module for data
extraction and verification of data entries.

Fig. 3: Component dataset upload

The extract data entries are one of the modules
which used to extract data entries from raw dataset.
The extraction process used to show data and verify
entries through locate button. It also used to arrange
the data in matrix form and add joins with other
referred entries (Fig. 4).

After processing the data entries system extract
all the data from uploading dataset (Fig. 5). The
extracted dataset can be verified with the help of
locating on the main module. Locate is a verification
module that used to check the uploaded data entries.
Data entries are in upload content having various
sub columns like design and other documents
related to the software reuse system.

Fig. 4: Extract dataset entries

Dataset passes through the fact and rules module
to check the data validations and refine data entries.
Fact and rules process data according to the input
component, which was entered by the user to

Apply Fact and Rules

Upload Data
Component

Start

Input
Component

Apply Genetic
Algorithm for

Priorities

Ranking Component

Eliminate
Unwanted

Data

Arrange
Data as Per
Availability

Evaluate/display
Component

Evaluate Parameters
Stop

Verma et al/International Journal of Advanced and Applied Sciences, 4(10) 2017, Pages: 144-149

147

process and find from the software reuse dataset.
Fact and rule module eliminate all the data entries
which are without software repositories. Other
management of fact and rule module is to validate all
the data rows based on input software component.

Fig. 5: Process data enterprises

After processing through genetic algorithm the
software components retrieved in new with all the
details and priorities on the basis of various factors
(Fig. 6). Priorities are depended upon the data
availabilities of software components and other
factors like issues in software component. Selected
component will be opened in a new with location on
component in software systems.

The graph shows results of proposed approach
and comparison with existing approaches (Fig. 7).
The results show better performance in terms of
accuracy as compare to other existing approaches
for component retrieval.

Fig. 6: Process component using GA

In Table 2, other parameters are also calculated
in this module to check the performance of the
proposed approach. The high rate of precision and
recall are shows high performance of a system. Here
the working of the proposed approach to extract the
component from the uploading dataset.

Table 2 compares the various test cases for
existing and proposed approach in terms of
precision (Fig. 8). The performance of the proposed
approach is higher as compare to other test cases of
existing.

Precision calculated in both existing and
proposed approaches in this graph with the help of

various test cases. The performance of the proposed
approach shows better results in all the test cases.
The precision rate is stable in all the cases as higher
than existing.

Fig. 7: Result with proposed and base work

Table 2: Test case with precision parameters in

component based software engineering
Precision test1 test2 test3 test4

Base 0.5 0.59 0.568 0.658
Proposed 0.7 0.69 0.66 0.71

Fig. 8: Precision

Table 3 compares the various test cases for
existing and proposed approach in terms of
accuracy. The performance of the proposed
approach is higher as compare to other test cases of
existing.

Accurately calculated in both existing and
proposed approaches in this graph with the help of
various test cases for retrieving software component
on the basis of various extracting rules and
optimizations (Fig. 9). The performance of the
proposed approach shows better results in all the
test cases. The Accuracy rate is stable in all the cases
as higher than existing.

Table 3: Test Cases based on base and proposed with

accuracy parameter
Accuracy test1 test2 test3 test4

Base 97.36 96.254 97.65 97.325
Proposed 98.52 98.47 99.36 98.78

0

0.2

0.4

0.6

0.8

test1 test2 test3 test4

P
re

ci
si

o
n

Test Case

Precision

Base Proposed

Verma et al/International Journal of Advanced and Applied Sciences, 4(10) 2017, Pages: 144-149

148

Fig. 9: Accuracy

Table 4 compares the various test cases for
existing and proposed approach in terms of recall.
The performance of the proposed approach is higher
as compare to other test cases of existing. Recall
calculated in both existing and proposed approaches
in this graph with the help of various test cases. The
performance of the proposed approach shows better
results in all the test cases. The recall rate is stable in
all the cases as higher than existing.

Table 4: Test case in recall based on base and proposed

work
Recall test1 test2 test3 test4
Base 0.785 0.915 0.9012 0.89254

Proposed 0.946 0.948 0.9386 0.9456

5. Conclusion and future scope

The proposed approach performs better as
compared to other existing approaches in terms of
accuracy and result component on the basis of
various components. The component quality and
efforts reduced in the proposed approach because
various factors are considered to find the component
from a raw dataset. The proposed approach
minimizes the error in component modules with
new columns attach with storage structure to check
the reviews of component users and performance in
real time (Fig. 10). All these components are used to
define raking of a software component and provide
the accurate and efficient results as good quality
component. The performance accuracy is also
suitable for almost all the cases in this field and
maximum reach is near about 99.3% of test cases.

Fig. 10: Recall

In future scope, the processes of the software
component can also be increased with the help of
software classification techniques. Classification
techniques are working on the basis of data features
and knowledge bases. So the proposed approach if
attached with classification technique than it might
enhance the accuracy of detecting software
components from the large dataset.

References

Al Saiyd NA, Al Said IA, and Al Takrori AH (2010). Semantic-based
retrieving model of reuse software component. IJCSNS
International Journal of Computer Science and Network
Security, 10(7): 154-161.

Basha NMJ and Moiz SA (2012). Component based software
development: A state of art. In the International Conference
on Advances in Engineering, Science and Management, IEEE,
Nagapattinam, Tamil Nadu, India: 599-604.

Cai X, Lyu MR, Wong KF, and Ko R (2000). Component-based
software engineering: technologies, development frameworks,
and quality assurance schemes. In 7th Asia-Pacific Software
Engineering Conference, IEEE, Singapore, Singapore: 372-379.
https://doi.org/10.1109/APSEC.2000.896722

Crnkovic I, Larsson S, and Stafford J (2002) Component-based
software engineering: building systems from components at
9th IEEE conference and workshops on engineering of
computer-based systems. ACM SIGSOFT Software Engineering
Notes, 27(3): 47-50.

Dutta S and Sengupta S (2015). Retrieval of software component
version from a software version database: A graph based
approach. In the International Conference on Advances in
Computer Engineering and Applications, IEEE, Ghaziabad,
India: 255-259. https://doi.org/10.1109/ICACEA.2015.
7164706

Fanchao M, Dechen Z, and Xiaofei X (2006). A specification-based
approach for retrieval of reusable business component for
software reuse. International Journal of Computer Science,
1(4): 283-290.

Grundy J (1999). Aspect-oriented requirements engineering for
component-based software systems. In IEEE International
Conference on Requirements Engineering, IEEE, Limerick,
Ireland: 84-91. https://doi.org/10.1109/ISRE.1999.777988

Gupta S and Kumar A (2013). Reusable software component
retrieval system. International Journal of Application or
Innovation in Engineering and Management, 2(1): 187-94.

Inoue K, Yokomori R, Yamamoto T, Matsushita M, and Kusumoto S
(2005). Ranking significance of software components based
on use relations. IEEE Transactions on Software Engineering,
31(3): 213-225.

Jia Y and Gu Y (2002). The representation of component
semantics: A feature-oriented approach. In: Crnković I,
Larsson S, and Stafford J (Eds.) Proc. of the Workshop on
Component-based Software Engineering: Composing Systems
From Components (a part of 9th IEEE Conference and
Workshops on Engineering of Computer-Based Systems),
Lund, Sweden.

Mili R, Mili A, and Mittermeir RT (1997). Storing and retrieving
software components: A refinement based system. IEEE
Transactions on Software Engineering, 23(7): 445-460.

Penix J, Baraona P, and Alexander P (1995). Classification and
retrieval of reusable components using semantic features. In
the 10th Knowledge-Based Software Engineering Conference,
IEEE, Boston, USA: 131-138. https://doi.org/10.1109/KBSE.
1995.490128

Penix JJ (1998). Automated component retrieval and adaptation
using formal specifications. University of Cincinnati,
Cincinnati, USA.

94

96

98

100

test1 test2 test3 test4

%

Test Cases

Accuracy

Base Proposed

0

0.2

0.4

0.6

0.8

1

test1 test2 test3 test4

R
e

ca
ll

Test Cases

Recall

base proposed

Verma et al/International Journal of Advanced and Applied Sciences, 4(10) 2017, Pages: 144-149

149

Radwan AA, Latef BAA, Ali AMA, and Sadek OA (2008). Using
genetic algorithm to improve information retrieval systems.
World Academy of Science, Engineering and Technology, 17:
1021-1027.

Shirali-Shahreza S and Shirali-Shahreza M (2010) Using formal
methods in component based software development. In: Sobh
T (Ed.), Innovations and Advances in Computer Sciences and
Engineering: 429-432. Springer Science and Business Media,
Berlin, Germany.

Şora I and Todinca D (2006). Specification-based retrieval of
software components through fuzzy inference. Acta
Polytechnica Hungarica, 3(3): 123-135.

Wang SF, He ZJ, and Wang KH (2000). Studies on software reuse
technology. Computer Engineering and Design, 21: 10-15.
Available online at: http://en.cnki.com.cn/Article_en/
CJFDTOTAL-SJSJ200005002.htm

https://www.google.com/search?biw=1280&bih=556&q=Berlin&stick=H4sIAAAAAAAAAOPgE-LUz9U3MImvKjFQ4gAxDU3NCrW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQAaDP9DQwAAAA&sa=X&ved=0ahUKEwjsk86GmLbVAhXHOhQKHT8JBMMQmxMIhwEoATAP

	Genetic optimized software component reuse model for reducingdevelopment and maintenance efforts
	Introduction
	Literature review
	Simulation model
	Simulation results and discussions
	Conclusion and future scope
	References

